
WARNING

Be aware that this version is an
uncomplete one. Many chapters have
not been written at all or finished yet.
It has not be entirely reread and may

contain some mistakes.

1

INTRODUCTION TO
VIDEO GAME

TRANSLATION

Terminus Traduction
Auteur : Nemesis

13th March 2004
Version : 0.9α

LATEX 2ε

file:terminus.romhack.net
mailto:tt_nemesis@yahoo.fr

Contents

1 What is this document ? 5
1.1 Disclaimer. 5
1.2 Preface . 5
1.3 Introduction. 6
1.4 Useful softwares . 6
1.5 Links . 7
1.6 Versions history. 8
1.7 Special thanks. 8

2 What to do ? 9
2.1 Where to begin ?. 9
2.2 General tips and organization. 10

3 Numbers 14
3.1 Learn to count. .14

3.1.1 Increment numbers. 14
3.1.2 Limited digits number. 14
3.1.3 Comparisons. .15

3.2 Bases .15
3.2.1 Binary. .15
3.2.2 Hexadecimal. .15

3.3 Common operations. .16
3.3.1 Right shift .16
3.3.2 Modulo .17

3.4 Composition/Decomposition. 17
3.4.1 Hörner method. .18
3.4.2 Decomposition. .18
3.4.3 Composition .19

3.5 Octal representations. .19
3.5.1 Little endian .19
3.5.2 Big endian .20

3.6 Time. .20
3.7 Exercises .20

CONTENTS 4

4 Programming 22
4.1 Why the C language ?. .23
4.2 General structure. .23

4.2.1 Keywords. .24
4.2.2 Comments .24
4.2.3 Variables .24
4.2.4 Constants. .26
4.2.5 Functions and procedures. 26
4.2.6 Data types. .27
4.2.7 Inclusions. .30

4.3 Useful libraries and functions. 30
4.4 Examples .30

5 File systems 31
5.1 Rom .31

5.1.1 Structure .31
5.1.2 Bank .33

5.2 Compact Disc. .34
5.2.1 Image. .34
5.2.2 Sector. .36
5.2.3 Tree. .37
5.2.4 File .39
5.2.5 Folder. .41
5.2.6 Video game CD. .44

6 Texts 46

7 Pictures 47

8 Compressions 48

9 Patchs 49

10 Tests 50

11 General Methods 51

12 Softwares 52

13 Corrections 53
13.1 Numbers. .53

Chapter 1
What is this document ?

1.1 Disclaimer

This guide has been created to help passionate players translating their favorite video games.
The author will not be held responsible if you use techniques described without taking in ac-
count laws and copyrights that rules the video games market.

1.2 Preface

There is no use explaining why I wrote this guide. In fact many people always looked for
information about video games translation work and specially hacking methods.
The point of this text is neither to answer every question on a specific subject nor to cover
all the parts of hacking work, but to provide solid basis to those who wish to start translating
games for fun.

Since this is just an introduction and I am not qualified to complete some parts, I would greatly
appreciate if experts - in assembler for example - would add the chapters this guide lacks. My
only requests are to keep the initial credits for the parts I have done and to know about updates,
in order to distribute them better (just email me attt_nemesis@yahoo.fr). I repeat that this is
only a beginner’s guide, therefore there is no need to put lots of details. If users want to know
more on a specific subject after understanding and mastering the basis, I am sure they will find
tons of FAQ on the Internet (page7) if you are interested). If you have general questions on
this guide and if you did not find information on the Internet, you can e-mail me.

mailto:tt_nemesis@yahoo.fr

1.3 Introduction 6

1.3 Introduction

As far as I know, there is no specific method to translate a game. Of course, the order of the
operations is always the same, but there is always a little difference in the conception of the
game that changes a lot of things in the translation work.
That’s why this guide is non-linear and the PDF format allows you to jump from one chapter to
another and read which part interests you. Of course there are still some basic chapters placed
at the beginning (page9) that can help a beginner answering this simple question : "What to
do?"
Except for these sections, the whole guide is designed to respond to your questions on various
matters, after reading the introduction or looking for a specific piece of information. You can
try to follow the links or just look up in the index (page54) for the part you seek.

Be aware that this document was written to translate games from English to others western
languages, and not from Japanese to English. The difference is small but it’s enough to modify
the structure of characters tables and some graphical elements (I apologize being French and
translating games from English to French only ;). Also forgive me for the many mistakes that
must remain in this guide.

Thank you for your attention, I hope you will find inside this book everything you’re looking
for (even if after reading this whole guide, you will certainly have even more questions).
Good luck.

1.4 Useful softwares

While using this guide, you will need different softwares to succeed modifying elements of
games. You have not to download them until you need them, since some of them are only used
in very specific situations.
The present document will refer to this softwares, just to avoid a beginner being confused by
environments and options. Many softwares exist for each application, and you are of course
free to use them if you are confident enough.

You can find the description of some softwares in the softwares chapter (page52) , with simple
walkthrough for some functions. If you have trouble using these softwares or similar ones, just
refer to this chapter or consult the help of the softwares.

There is the list of the softwares I will use, with a brief description :

Name and address Description

CD Mage A simple software that allows extraction and preview of files di-
rectly from a CD image file. You can correct ECC and open var-
ious sorts of CD-Rom images. Usefull to start the hacking of a
Playstation video game.

1.5 Links 7

Name and address Description

Nero Burning Rom A CD and DVD burning tasks manager to test your Playstation
modifications directly on your video game console/system. It
supports nearly every format of CD and all steps of the burning
can be customized.

Notepad It is just an example, if you have a fantastic word processor, don’t
hesitate to use it, but keep in mind you should manipulate scripts
with a constant width font, it is easier to estimate overflows on
lines.

Susie A PSX pictures viewer. It opens TIM files (TIM is one of the most
widespread Playstation format) and can convert them to BMP and
others classical formats.

Tile Layer Pro An old graphical editor that can handle various format (from NES
to half-PSX) directly using the Rom and binary files. Perfect to
find standard pictures and fonts.

Translhexion A very efficient hexadecimal editor. It includes a relative search
engine and table file functions as well as partial opening options.

Visual C++ An heavy environment for programming in C/C++. It is neither
a freeware nor a shareware but is worth the price, when you dis-
cover the amount of possibilities offered, particularly for debug-
ging. Don’t be afraid, it is not necessary and a simple C com-
piler (like gcc) with a good text editor are enough for most of the
games. It just depends on your goals and your abilities.

1.5 Links

Here are some links to websites (I hope they will live until you read these lines ;) that can help
the beginner to understand some techniques and can provide the expert specific information on
an algorithm, a video game system or a file format.

Name Address

Terminus Traduction website (french)http://terminus.romhack.net

TRAF (French Translation website) http://traf.romhack.org

Romhacking Repository http://www.romhacking.com

Zophar’s Domain http://www.zophar.net

http://terminus.romhack.net
http://traf.romhack.org
http://www.romhacking.com
http://www.zophar.net

1.6 Versions history 8

1.6 Versions history

• 2003 - December 16 - Started to write the guide

• 2004 - March 13 - First alpha release

1.7 Special thanks

I prefer to put this section here because no one cares about it when it is at the end of a document
even if it is worth the reading :)

I didn’t ask for help to put tips in this PDF but I would like to thank all the members of Termi-
nus and the people outside the group that work so much to translate games. Their will to spread
beautiful tales despite the language issue combined with their passion for their favorite video
games made me understand four years ago that even exhausting activities that need various
talents to achieve can be free and a simple question of time.

I also want to thank all the players and future game-translators who asked for this guide or just
wished to learn how to perform specific tasks. I hope they will find what they were looking for
in this document and that their dreams become true.

I know there will always be fans from all over the world to support the players but I just dream
that someday, putting aside financial problems, we and the official translation teams (or video
game companies) will be partners in order to distribute the best translations possible for every
game that is worth one’s while.

Nemesis

Chapter 2
What to do ?

2.1 Where to begin ?

If you’re reading this, it is certainly because you want to translate a game but you only consider
it as a CD, a cartridge or a file. You probably don’t know how to extract elements of the game.

The first thing you should check is the structure of the support (page31) you have. Whether
it is a CD or a Rom, the beginning and the end of the process will be slightly different.

Then you may want to know what skills are necessary to translate the game. I deal with full
translations, of course you can convert only a part of the game if you are really motivated and
aware of your weaknesses. To begin I would advise you to choose a classic game like Final
Fantasy 6 published by Squaresoft on SNES and PSX. It is not the simplest one, but it is avail-
able on different supports and shows many aspects of the work even if it does not require high
qualification skills. If you already have chosen a game, avoid beginning with a LZSS-MTE-
script-game or a full-of-compressions-ASM-required-game (you will understand what I mean
after jumping between 2 or 3 chapters).

We can divide the translation process in 3 distinct fields. It is arbitrary but can provide you
hints on what to start with :

• Texts translation : you have the script to translate (the heavy part) and all the other texts
or words that compose the menus, the help, or battles for a role playing game.1 Go to

1I will often use RPGs as examples since I’m fond of them (not a really good excuse) and also because they are
the more breathtaking projects that provide much translation work.

2.2 General tips and organization 10

the section dedicated for further information (page46) .

• Graphics translation : some elements are often included directly as pictures. It is the
case of many images with text written on it and obviously fonts. Read the corresponding
section for further information (page??) .

• Assembler programming : this part is not developed in this guide since they are spe-
cific to each video game system and the author has little knowledge of SNES or PSX
processors. Code modifications are rarely necessary but can improve the appearance of
the game (by adding variable width font algorithm or changing the size of the fonts for
example) and help enlarging boxes or decompress elements.

It’s up to you to decide which part you want to begin with. But the order can be determined
if you want to add characteristics to a font that will change the format of the texts to reinsert
after having dumped them for instance. In general, it is not something you should worry about,
since writing a program that converts a text between formats is one of the easiest tasks you
should be able to do after implementing some functions. Even if you want your paragraphs to
have a nice shape.

You can of course go directly to the part that suits your goal and achieve your project, but you
may miss information that helps understanding how things work together and why they exist.
Do not feel obliged to read the whole guide, just find the piece of information you are looking
for and jump from one chapter to another when a word or method seems unknown. Also feel
free to use the index at the end, if you ask for something precise from this book.

The index follows the table of contents (arguable choice). There is no global alphabet ordering,
but you will find titles of chapters, section and subsections as well as keywords. These are in
small letters and refer to definitions or information about the notion.

2.2 General tips and organization

Here are some general tips on how to organize files and not mix versions up. These tips can
apply to many other applications in computer science :

• The crucial thing to avoid losing his work : make backups. It is something terrible un-
derstanding you have spent lots of hours working on a project and that the only results
are the remains of a broken hard drive. Today CD-R (or CD-RW) are cheap and writers
are fast, why miss the chance to work safely without having an heart attack when your
operating system crashes.

• Never mix up versions : As just said for the CDs, hard disk space is also cheap. So if
you have to create different versions of your changes, I recommend you copy every file

2.2 General tips and organization 11

in a new folder, specifying the version. If you have to go back or just test your precedent
version, you will just have to look in the other folder, and not cancel your update manu-
ally.

• Separate the tasks . When working on a project, you will have lots of different tasks to
accomplish, from changing the font to translating the script. Think that you have made
only one file that regroups every changes in the game. Then you start testing and the
game crashes or there are bugs you don’t even understand how they can appear (very
common). Certainly, only one of your modifications is responsible, but you have to gen-
erate a whole new patch to see what is wrong, since you did not create one patch for one
task. An other good consequence of using different programs and patches for tasks is
the cumulative effect. If you begin by changing the width of text boxes for example, and
then you add a variable width font (page??) to your game, you will maybe consider that
the first transformation is no more useful. If you distinguished well the two tasks, you
will just have to deactivate the one that is obsolete. For further information on how to
execute different programs and centralize commands, see the section dedicated to batch
file (page??) .

Moreover, you should make tests often (page50) , since little change in a program can greatly
modify a Rom. Therefore you should also keep a local backup of the critical files (the original
Rom or the translated texts).

Finally, let me give you a few tips on programming. Not about the way you should program,
every one has his own point of view and none is better than the other :

• When write a program : I will not advice you to make as many programs as possible, but
don’t hesitate if you think it will not take to much time compared to the manual work.
Of course if you just have to change 4 characters in file, don’t write a program but don’t
forget to write in a file what you did.

• Put lots of comments in your code. While starting a project, everything is fine. You write
code, you test, you translate... But if you have to stop programming for a long period,
when reading your code again, you will have to make efforts to understand what you did
the first time. To ease the operation, just put comments everywhere you had to think, and
also explain what the variables are for. This is something constraining but I don’t even
talk about another programmer that would have to continue your work.

• Make functions and procedures when you have to write the same portion of code several
times (even 2). It will make your code maintainable and you will be able to reuse these
functions later (many functions are constant from one game to another, or just one or two
parameters differ).

• Make the code as simple as possible. You have to take efficiency in account (particularly
while handling files on the hard disk) but there is no reason to optimize your code, and

2.2 General tips and organization 12

make it incomprehensible, just to save a few seconds of execution.

• ASM (assembler) is the lowest-level language (just a bit higher than machine language)
you can program. That’s why you should avoid it if you have high level and complex
operations to perform. Reserve ASM for changes in the shape of the game or anything
that concern the game program directly, 24 bits pointers (page??) or VWF (page??) .
You can also read the ASM code to understand a complex compression or find elements
of the game you couldn’t find directly. In general, if you do not want to make a perfect
conversion, you will be able to succeed without reading a single page of code. But you
will need it if you wish to improve the rendering of the game or implement additional
functions in it.

On the next page is an example of hierarchy taken for Chrono Cross, a PSX game. Here are
the basic explanations on the various components :

• The two folders named 1 and 2 correspond to different versions of the tools.

• 00_Executables regroups the scripts and the executable for every task available.

• 01_Programmes (02 and 03) covers the functional code as well as the programs that have
been created during the development. See programming for samples and explanations
(page??) .

• 05_Infos contains information on elements present on the CD.

• 10...33 : iso and files of the CD (page34) before and after translation, this is the heavy
part (approximately 2Go).

• 40 and 41 : texts before and after translation (page??) .

• 42 and 43 : tables used for interpreting characters codes (page??) .

• 55 : IPS patch for the different parts of the hacking (page??) .

• 60 : scripts used by the main program to execute various operations.

• 98 : mails and screenshots of the developments and bugs of the project.

2.2 General tips and organization 13

Chapter 3
Numbers

3.1 Learn to count

You may think I make fun of you when reading this title, but it is in fact more complicated
than it looks. You have to go back to the elementary methods to understand how the different
numeral bases work. I will take the example of the decimal system, the more natural, since
we have ten fingers, and the one that we use everyday, but that is nearly totally unknown to
computers.

3.1.1 Increment numbers

In the decimal system, we have ten numerals, in fact they are ten different symbols that are the
nuclear elements of numbers : 0,1,2,3,4,5,6,7,8,9. And contrary to what many people do, 10
should not be seen as a number that represent the decimal base, but as a compound of 1 and 0.
Starting from 0, counting is really simple. You just have to change the last numeral until you
reach the last one, and then increment the one immediately to its left.

3.1.2 Limited digits number

In computer science, the number of digits is always limited. Even if you want to write a 0, you
will have something like 0000. We will stick to positive integers in this guide since they are
the useful numbers for romhacking.
The main consequence of this limited size is the calculation of 9999+0001 if you limit the

3.2 Bases 15

number of digits to 4 in the decimal base. It is impossible to add a fifth digit, therefore all
numerals are put to 0 and the result is 0000. This phenomena is called an overflow , but it does
not cause the program to stop, and you should be cautious.

3.1.3 Comparisons

To compare a number with an other, you just have to match the different digits and compare
the numerals. It is obvious but can apply to every base and for many applications, which is not
assimilated by everyone.

3.2 Bases

This was the easy part, that almost everyone mastered in elementary school. As I explained in
the beginning, we chose the decimal system, because of our fingers, but there is no reason why
a computer would use the same base since it does not have fingers but signals, with current or
not. These 2 states explain why the binary system is used. For practical reasons and mainly
because of the high number of digits necessary in binary system to express a not so big number,
the hexadecimal system (16) is also used.

3.2.1 Binary

One digit in binary system and computer science is called a bit. Most of the processors and
memory have a width of bus multiple of 8, that’s why it is rarely used directly. If you want
more information about all this, just read documents on computer architecture. Just remember
that there are often used in compressions (page??) and graphical data.

See the example to understand how to count in binary :

10100111 The initial binary representation

111 7 23−1

+ 100000 32 25

+ 10000000 128 27

= 167 The decimal value

3.2.2 Hexadecimal

Notice that the higher the base is, the smaller the number of digit. For example "15" in decimal
correspond to "1111" in binary and "F" in hexadecimal.
Logically in hexadecimal, there must be 16 different symbols, and since the well known arabic
numerals are already selected, the first 6 letters of the alphabet have been chosen to complete

3.3 Common operations 16

the base.

Hexadecimal can be used to show data such as text particularly if a table is used. To have
a preview of hexadecimal data, just open any file present on your computer (nonetheless not
too large) with an editor (page7) . Bits are grouped by byte (8 bits) which corresponds to
2 hexadecimal symbols1. Here is a table that gathers the powers of 2 together, the most used
numbers while programming. The powers go from 0 to 7, coded on 1 byte or 8 bits plus 0 and
255.

Power Binary Decimal Hexadecimal

- 00000000 0 00

0 00000001 1 01

1 00000010 2 02

2 00000100 4 04

3 00001000 8 08

4 00010000 16 10

5 00100000 32 20

6 01000000 64 40

7 10000000 128 80

- 11111111 255 FF

3.3 Common operations

To conclude with the bases you will manipulate and calculations you will do on numbers, let
me introduce the binary right shift and modulo operations.

3.3.1 Right shift

The meaning of the term, right shift, is clear enough on an example. If you have a binary
number, say 10100111 (167), and you apply a shift of 3 bits to the right, you obtain 00010100
(20 in decimal)2.

1Hexadecimal numbers are represented in C by0x followed by the symbols (128=0x80). But hexadecimal
numbers can also be found as80h or x80.

2Right shift is coded in C by167»3.

3.4 Composition/Decomposition 17

000 10100111 → 00010100111

167 20

It is just a question of moving bits to the right. Here the box stands for the 8 bits considered
that represent the number.

There is also a left shift that can be assimilated to a multiplication of the number by 2shi f t,
which explains why it is not detailed here.

3.3.2 Modulo

Broadly the modulo is the function that gives the remainder of a number by another. It is useful
for creating cycles like 0,1,2,3,0,1,2,3,0,... (modulo 4). When writing it in mathematics, you
have :

a = b∗q+ r ⇒ a≡ r[b] with 0≤ r < b

"If r is the remainder of the euclidian division of a by b then a modulo b equals r" what may
seem a bit abstract for those who are not at ease with maths.

We will just concentrate on the particular case of modulo 2n. In this case, applying a modulo
boils down to keep the (n-1) last numerals of the binary representation of the number. Here is
the example of 167 modulo 83 :

1000 8 = 23

10100111 167

111 167 modulo 8 = 7

You just have to keep the 3 last bits of the binary representation of 167, and obtain 00000111.

3.4 Composition/Decomposition

One day or another, you will need to form great numbers from small ones by concatenating
figures, and the contrary. For example from 19 and 81, you can create 1981.

Alas, even if it is possible to concatenate two strings that are just sequences of characters, you
must perform calculations for numbers. These are really simple ones, but there are means to
fasten the process and make it simpler.

3Modulo is coded in C by167%8.

3.4 Composition/Decomposition 18

3.4.1 Hörner method

This method, taking the name of its inventor, use the numbers expressions shown below. The
first line is the example of 1981 in decimal basis, the second line is the general form :

Base 10 : 1981 = 1+10∗ (9+10∗ (8+10∗ (1)))
Base b :an−1an−2...a1a0 = an−1+b∗ (an−2+...+b∗ (a2+b∗ (a1))...)

The figures are written in the same order as in the standard representation of numbers. Com-
puting a number is much more efficient by applying this method than by doing :

Base 10 : 1981 = 1∗103+9∗102+8∗101+1∗100

Base b :an−1an−2...a1a0 = an−1∗bn−1+an−2∗bn−2+...+a1∗b1+a0∗b0

Moreover, you still can build your number while reading figures.

3.4.2 Decomposition

The first application is the decomposition of numbers. For LZSS compressions (page??) , you
must read information bit by bit, which is impossible in modern computer architectures4.

So you have to read bytes and extract bits from them. If you have a number, let’s say 121 on 1
byte, this is the series of operations you have to perform :

A A%2 A»1 Hörner expression

121 1 60 1+2∗60

60 0 30 1+2∗ (0+2∗30)

30 0 15 1+2∗ (0+2∗ (0+2∗15))

15 1 7 1+2∗ (0+2∗ (0+2∗ (1+2∗7)))

7 1 3 1+2∗ (0+2∗ (0+2∗ (1+2∗ (1+2∗3))))

3 1 1 1+2∗ (0+2∗ (0+2∗ (1+2∗ (1+2∗ (1+2∗1)))))

1 1 0 1+2∗ (0+2∗ (0+2∗ (1+2∗ (1+2∗ (1+2∗ (1+2∗0))))))

0 0 0 1+2∗ (0+2∗ (0+2∗ (1+2∗ (1+2∗ (1+2∗ (1+2∗ (0+2∗0)))))))

The third column, the modulo 2 operations, corresponds to the reversed binary representation
of the initial A number, which is 01111001. You can notice the sequence is the same at each
step of the decomposition. It is always the modulo 2 followed by the right shift of 1 bit. This is
interesting because it is easy to repeat a sequence in a program. See the programming chapter
examples for applications (page??) .

4The unity is the byte in general, even in 32 bits architecture, just to keep an easy control on characters.

3.5 Octal representations 19

3.4.3 Composition

I do not think you need more explanations to understand how to build a full number from bits,
since it is just the reversed sequence. Initialize the number A to 0 and start from the highest
power bit, then at each step, start by multiplying by 2, then add the value of the bit :

A Bit b A*2+b Hörner expression

0 0 0 0+2∗0

0 1 1 1+2∗ (0+2∗0)

1 1 3 1+2∗ (1+2∗ (0+2∗0))

3 1 7 1+2∗ (1+2∗ (1+2∗ (0+2∗0)))

7 1 15 1+2∗ (1+2∗ (1+2∗ (1+2∗ (0+2∗0))))

15 0 30 0+2∗ (1+2∗ (1+2∗ (1+2∗ (1+2∗ (0+2∗0)))))

30 0 60 0+2∗ (0+2∗ (1+2∗ (1+2∗ (1+2∗ (1+2∗ (0+2∗0))))))

60 1 121 1+2∗ (0+2∗ (0+2∗ (1+2∗ (1+2∗ (1+2∗ (1+2∗ (0+2∗0)))))))

3.5 Octal representations

When working with numbers greater than 255, it is obvious you have to use more than one
byte. And as soon as you have two or more bytes, the issue of order appears.
It is the same problem with dates :

• dd/mm/yy : Europe (∼ Big endian)

• mm/dd/yy : United States (∼Middle endian)

• yy/mm/dd : Japan (∼ Little endian)

The names come from the Gulliver’s Travels.
Everything that is not Little endian neither Big endian is called Middle endian . These sorts
of hybrid representations are often used in LZSS compressions (page??) and are the most
difficult to cope with.

3.5.1 Little endian

It is the more natural way to express numbers. Intel architectures or networks use this norm.
The less significant bytes are put to the right of the representation. For example 66051 (on 24
bits) makes 0x010203 in hexadecimal.

3.6 Time 20

3.5.2 Big endian

It is the representation used by Motorola (a SNES has a Motorola 65c816 processor) and most
of RISK design processors. The less significant bytes are put to the left of the representation.
For example 66051 (on 24 bits) makes 0x030201 in hexadecimal.

3.6 Time

If you are wondering why this section is present in this guide, it will only interest you if you
are willing to translate games on CD (like PSX ones). In fact the time numeration is used to
locate the sectors on a CD. If you do not know what a sector is or what is the structure of a CD,
see the dedicated section (page34) . CDs were designed to listen music, and it is still visible
in the headers of the sectors5.
Following is the list of the elements of the time structure used on CDs, from the most significant
to the least significant :

1. Minutes : a decimal number coded on 1 byte.

2. Seconds : a decimal (be careful) number between 0x00 and 0x59. I mean the letters from
A to F never appears in the hexadecimal representation.

3. Frames : same thing here except the frames go from 0x00 to 0x74, just because 1 second
fits in 75 sectors on an audio CD.

See the table if you do not see where the "problem" stands, I repeat all numbers are written in
hexadecimal :

00 02 00 first sector time on a CD

00 02 09 → 00 02 10 decimal change of frames

00 02 74 → 00 03 00 change of seconds

00 09 74 → 00 10 00 decimal change of seconds

00 59 74 → 01 00 00 change of minutes

09 59 74 → 10 00 00 decimal change of minutes

3.7 Exercises

Read the answers (page53) ?

1. What is the decimal and big endian hexadecimal representation on 32 bits of the binary
number 101001110010101101 ?

5The time is a part of the subchannel coded on 4 bytes, the last one is always equal to 0x02 so the initial sector
correspond to 00020002.

3.7 Exercises 21

2. What is the hexadecimal representation of 8F right shifted by 4 and 8F modulo 16 ?

3. What time is written in the header of the 100523th sector of a PSX MODE 2 CD ? (a
calculator may help)

Chapter 4
Programming

Now that you have learned the specific aspects of numbers in computer science, you should now
be able to start programming the simple functions necessary for translating and manipulating
files.
I say necessary because using softwares found on the Internet has many disadvantages even
if it can fasten the overall process. But if you think it can help you, for instance if you are
translating a game that does not seem to oppose any "difficulties", do not hesitate:

• You cannot add complex functionalities to the program, without modifying its original
conception or simply change anything if you just use the byte-code (the executable file).

• If you do not understand how things are made, it will be difficult to adapt to specifications
or respect constrains.

• You are not the author and using such tools requires an authorization.

That is no reason to avoid using things that have been made. If you think that a portion of code
presented in the following examples could be useful, just copy/paste them and do not bother
with rewriting them all (if not to train). I would also advise you to share your work with the
others, at least when you have finished working with your translation. Everyone has his own
opinion on reusable code, but Linux or Java would not be what they are if people had not shared
anything.

A main consequence is the preference to general functions that can apply to any game for very
specific tasks than an huge number of pages dedicated to one game. Of course it is not easy to
conceive such functions and you can spend more time on them, but in the end, you should be
satisfied several months later when just calling your function on an other game will be enough.
On the other hand, do not complicate too much, if you are not at ease with programming or if

4.1 Why the C language ? 23

you do not see an easy solution.

This is no general introduction to programming, I will just introduce the useful points for
translation in C language. As said in many others sections, if you want to learn every aspect of
programming, you should read books dedicated to it.

4.1 Why the C language ?

Of course if you are familiar with others languages, particularly objective languages like C++
or Java, you will be able to write a more structured code, and you will certainly succeed in
witting whatever program you want with them. But the choice of C when programming tools
for translation is not a pure coincidence. C disposes of very efficient functions to read and write
data as well as manipulating data types. You will soon understand what I mean.
Moreover it is fast and many compilers are available for free, even if the integrated develop-
ment environment from Microsoft presented in section Softwares (page52) is not (of course).
I use it because of the debugger, one of the most complete and efficient in the world.
Finally, many tools are already programmed in C, and even if new languages such as Java offer
more possibilities and simplify many tasks, you should never use them.

4.2 General structure

Every program, in whatever language you want, works the same way.

This is how a simple program is structured, this example will also be used to explain the basic
operations and primitives available. Do not worry if you never programmed and do not under-
stand what everything is for, it will soon become clear. The text has just to be put in a text file,
and preferably with a ".c" extension.
This is not a perfect program, since the simple fact global variables are present can be dis-
cussed. It is just here to show what you can do when programming in C, not what you should
or must do. It is up to you to find your own methods and strictness, even if some really bad
habits should be avoided. I will try to avoid these mistakes in the following examples.

1 # inc lude < s t d i o . h>
2 # inc lude "myFibo.h"
3
4 i n t rank = 1 0 ;
5
6 / / D e f i n i t i o n
7 i n t Fibo (unsigned i n t rank) ;
8
9 /∗−−−−−−−−−−−−−−−−−−−−−−

10 F i b o n a c c i
11 −−−−−−−−−−−−−−−−−−−−−−−−
12 <− rank : rank
13 −> r e t u r n t h e n th term

4.2 General structure 24

14 −−−−−−−−−−−−−−−−−−−−−−∗ /
15 i n t Fibo (unsigned i n t rank) {
16 i n t r e s u l t ;
17 i f (rank > 2) {
18 r e s u l t = Fibo (rank−1)+ Fibo (rank−2);
19 } e l s e
20 r e s u l t = 1 ;
21 re turn r e s u l t ;
22 }
23
24 i n t main (i n t argn , char ∗ argv []) {
25 i n t v a l u e = Fibo (rank) ; / / E v a l u a t i o n
26 p r i n t f ("Fibo(%d)=%d\n" , rank , v a l u e) ;
27 g e t c h () ;
28 }

I will start by introducing the basic elements of the C language then describe the useful struc-
tures using the example. It may seem boring at the beginning but I think it is necessary to be at
ease with these concepts in the future.

4.2.1 Keywords

A keyword is a word specific to the language. In the code above, you can find#include, int,
unsigned, if, else, return, void. They are generally used for basic control sequences in the
program (the "if...else..." structure for instance).
Of course you cannot use the keywords as names for variables or constants. Be careful with
names, since the C language is case sensitive, so "else" is not "Else". You will see in the next
section what each keyword is for.

4.2.2 Comments

Comments are of course used to annotate the sources, by writing sentences or formulas en-
capsulated between /* and */ as you can see from line 9 to 14 on the example. You also can
comment the end of a line or an entire line by inserting a // in it (line 6 and 25).
Even if you think it is boring to write comments when you program, you will understand the
interest when modifying your program several weeks later or having to comment everything
because someone else needs to get a hand on it. Everything that was clear will be much harder
to understand, even if you tried to make the program the simplest as possible.
Putting comments to introduce a function is also a good idea, because it will be automatically
included in help files if you use language such as Java and JavaDoc, and everyone will know
what the functions are for just by reading the headers. Theoretically, they should not have
access to anything else.

4.2.3 Variables

Every element that you want to manipulate has to be stored somewhere. Therefore you have
to declare variables at the very beginning of almost every operation. Variables have specific

4.2 General structure 25

types that will be presented later. This is just to avoid adding integers with strings for example
and to easy the compilation. Think about the result of Masamune = "Ragnarok" + 15. In many
advanced (I mean a bit more evolved) languages, all these operation are forbidden, but C is far
less restricting. You can for example add integers with characters, since characters are assumed
as integers.

int main (int argn, char *argv[]) {

On this line, argn is a variable of type int(eger) as well as argv is one of type char(acter)*. For
the star, you will see later what it means. This function also return a value that is an integer
and of course also stored in memory. Understanding these points are very important to avoid
the classic "Segmentation fault" error. The general declaration of a variable is :

<type> <variable>[<size>] [=<initial value>];

Here is the description of the various field :

1. <type> is the type of the variable. Types are described later.

2. <variable> name of the variable respecting the conditions given in the keywords section.
If you want to fit to the conventions, variable are in lower case and do not start by a
capital letter. If you have long names, words composing it can be separated by ’_’, not
spaces of course, since it is the character reserved for the code hashing. There is a table
at the end of the section that sums up the conventions, for those who are interested and
want their code to be easily read by programmers.

3. <size> is optional and allow you to declare arrays. It will be developed in the pointers
and arrays part (page28) .

4. <initial value> is an option to set the value taken by the variable during the declaration.
You always can replace it by affectations on the following lines.

Whether were the declaration is put, the variable can be local or global1. If the declaration is
placed at the beginning of the program, as for rank on line 4, it is accessible on every line of the
program. On the contrary, result declared on line 16 is only visible in the Fibo function from
line 15 to 22. In fact when running the program, this is approximately how variables are stored
and treated in recursive environments.
Main symbols table created when the program is launched :

Table Link

mother none

Symbol Type

rank integer

Fibo function

1There are the "public" and "extern" keywords reserved to declare variables with specific access permissions.

4.2 General structure 26

Symbols table created when entering the Fibo function :

Table Link

fibo mother

Symbol Type

rank integer

result integer

In fact the "fibo" table inherits the symbols of the "mother" table. That means that even if rank
was not defined in Fibo, the program would have used the rank variable defined before. If the
program cannot find the variable in the actual table it looks recursively in the upper tables. Here
you find directly rank in the fibo table and you do not have to look for it in the mother table. If a
variable was not declared anywhere, the compiler stops when he encounters the NULL pointer,
represented here as "none".
You must understand that the rank variable in the parameters is not the one declared outside
the function and used to call the Fibo function. An important consequence is that the modifi-
cation of the rank variable in Fibo will no impact on the global variable having the same name.
Therefore you have to return a value. You will have further explanations in the pointers part
(page28) .

4.2.4 Constants

Variables are necessary whenever something has to change from an initial value to another.
The type cannot be changed, but for specific conversions and only by changing of variable or
using the void type.
Even if you will often store data when you have to modify it, there are some cases where
constants may be useful. They keep the value you give them until the end of the program. You
might for example use constants for a path or a buffer size, or even specific parameters of your
program which the user should not interfere with.
To declare a constant just write the following line. You do not have to give the data type.

#define <variable> <value>

4.2.5 Functions and procedures

When you want to manipulate data and not just declare variables or constants, you must use
functions and procedures2. You have a header of function at line 7 and definitions at lines 15
and 24. Functions are written to structure the code and to avoid continuous copy/paste. More-
over if you have to modify a part of your program, it will be easier to locate the lines concerned
and you will not have to do it several times, taking the risk to forget an occurrence.

Now this is how a function is declared in C :
2The simple difference between a function and a procedure is that a function calculates something, returns a

value, and a procedure does not. They are sometimes called methods.

4.2 General structure 27

<return type> <function> (<parameters>) {...}

If you are just writing an header3, replace the "..." by ";". <parameters> stands for a list of
variable declarations separated by ’,’ as it is in the main function at line 24.

The code of the function, between brackets, must contain a return statement followed by an
element (value or variable) of the return type specified before. There are only two exceptions
: the first one is the void type, since it is obvious that there is nothing to return and the second
one is the main function.
The main function is special because it is the one that will be called upon starting the program.
It has a very specific syntax and specific parameters (the number of arguments on the command
line, and the arguments themselves as strings put in an array). You will see how to use them
with the examples. If you include or copy various functions in your program, there must be
only one main function and you will not be able to run anything if there is none (it is generally
the case for libraries where functions are called from outside).

4.2.6 Data types

Every elements that you will manipulate will have a data type, even if it is a function that does
not return anything. There are lots of data types used by the C language, but I will simply
introduce the ones that will be useful for translating tools.

Basic types

Data type Alias Size in bits Description

bool 1 Only available in C++, you can always manipulate
binary data with integers instead. There are two val-
ues : true(1) and false(0).

char _int8 8 The minimum size data when handling files and cer-
tainly the most used type. It represents characters
but is equivalent to an integer between -128 and 127
(in fact 256=28 values at all).

short _int16 16 Integers between -32768 and 32767 (216).

int
long

_int32 32 Same thing here except the size of the int denomina-
tion depends on the system. On a 32 bit system, it is
what you are like to have, it is a 32 bit integer. On
other systems, it will be different.

_int64 64 One more time integers coded on 64 bits (8 bytes).

void It is nothing. What you should write when there are
no parameters or no return value

3You might never have to write them if you are just coding simple programs.

4.2 General structure 28

All the types linked with integers can besignedor unsigned. As you must have seen in the
numbers section (page14) , integers in computer science have limited digits and you just have
learned the standard lengths you will manipulate. But integers can be positive or negative. To
specify the type of integer you must use the following declaration :

[unsigned|signed] <basic type> <name>;

In the example we used "unsigned int n" at line 7 and 15.
The size of the data is the same, but without the sign, all negative data become positive and
you can reach larger integers. For example for a 16 bits integer, you will go from 0 to 216−1,
which equals to 65535.
Now what happens if you evaluate 255+1 for an unsigned char? Instead of obtaining 256,
because it cannot fit in 8 bits, you get 0. The same would happen if you take away 1 from
-32768 for a signed char. You will get 32767. In fact you will always switch between the
maximum to the minimum.

Arrays and pointers

This is something difficult to understand and apply for many new programmers. You are
warned at least ;) In fact it is just a question of position and nature of the things you ma-
nipulate. Everything you manipulate lies in memory. Watch carefully the table below and just
imagine the memory like an huge vertical array.

Address Value

↓ ↓

0x004FFF 0x??

0x005000 0x20

0x005001 0x00

0x005002 0x28

0x005003 0x00

0x005004 0x01

0x005005 0x??

↓ ↓

To explain a bit, when you run programs, they get the right to write in a specific part of the
whole memory. Here suppose the program can write in the black part, from address 0x005000
to 0x0050044. Data is already there when you start the program but you can modify it the way
you like.

You may now see the difference between the data and the address : the address is only the
position in memory, and the only thing you want to manipulate, evaluate and transform is the

4Do not worry, you can allocate much more than 5 bytes when running true programs, this is just a small
example.

4.2 General structure 29

data associated.
If you learned about octal representations, you should acknowledge without difficulties that
reading a char (1 byte) at 0x005000 returns 0x20 (32) which correspond to the space in the
ASCII char tables. Read the text section if you need more information on tables and string
manipulations (page??) .
Now if you read a short integer in Big Endian at 0x005000, you will obtain 0x0020 (32 also).
But at 0x005002 (0x005000 + 2 bytes), you will get 0x0028 (40). A Little Endian long at
0x005001 is equal to 0x00280001 (2621441). Depending on the address and the type you
choose, you can read everything, and not specially know how it was written in the first place.

When the time to write data has come, the real difficulties appear. For the same reason you can
write everything almost everywhere and not really control what you are doing. Since operating
systems are well designed, you will never be able to write in the red zone and damage other
parts of the memory. If you try to write at 0x004000 for example, you will get a beautiful
message known by every C programmer : "Segmentation fault". But if you want to write at
0x005000 and write at 0x005005 instead, you will have no error because it is still in your seg-
ment of memory. Then the behavior of the program will certainly became erratic and you will
certainly not understand what it is doing.

Now that you know about the many problems linked with pointers (in fact memory addresses),
you may wonder why they are necessary if they cause so much trouble. They are useful for
indexing elements in arrays but essentially to modify variables in functions. As said before,
when exiting the function, the computer loses control on the variables declared inside, except
for the return value. If you want to modify complex structures or several variables, you will
have to use pointers5.
In the examples below you have two ways for returning and affecting a variable. The function
only increments the parameter by one. In the 2 programs, the n variable increases from 5 to 6.

The first one uses a return value :

1 i n t i n c r e m e n t (i n t n) {
2 re turn (n + 1) ;
3 }
4
5 i n t main () {
6 i n t n = 5 ;
7 n = i n c r e m e n t (n) ;
8 }

The second program uses a pointer on the n variable :

1 vo id i n c r e m e n t (i n t ∗ n) {
2 ∗n = ∗ n + 1 ;
3 }
4
5 i n t main () {
6 i n t n = 5 ;
7 i n c r e m e n t (&n) ;
8 }

5You can always declare only global variables but this is a rather bad idea

4.3 Useful libraries and functions 30

You will certainly better see the differences while programming simple procedures and observ-
ing the examples given in the chapter (page??) . You should just remember the following
basic rules :

• If V is a variable, use &V to get the associated pointer.

• If P is a pointer, use *P to get the associated value.

• Every variable declared with a star is a pointer.int*n is not an integer but a pointer to
an integer.

• If you need to modify a variable in a function, "always" use pointers. There are some
cases when it is avoidable but always reacting the same way is easier for beginners.

4.2.7 Inclusions

Inclusions (on lines 1-2) are the files you want to use in your program. They are introduced
by the keyword#include. These files can regroup functions or just headers6 from library7 you
need. For instance, the file stdio.h includes functions to read from and write to files or print
text on screen.
Basically, every C environment should dispose of standard libraries such as <stdio.h> or <stdlib.h>.
Many functions are redundant but each library offers different possibilities. Between line 1 and
2, there is a major difference : <...> and "..." In fact these symbols refer to the directory the
system will look in for the files. The <> correspond to system paths, where all the standard
libraries are stored. And "" stand for the work directory, where you have created the project/C
files.

4.3 Useful libraries and functions

4.4 Examples

6Headers are the simple definition of function without applicable code.
7Libraries are packages that perform various operations on a specific subject.

Chapter 5
File systems

Wether you want to translate a cartridge game or a CD game, many steps will be similar, the
main difference is in the format and the extraction of elements. We will start by the cartridge
and then extend to the CD. I do not think one support is easier to deal with than the other, since
they have both their advantages.

Before reading this part, you should deeply learn the Numbers chapter if you are not used to
hexadecimal, as well as Start Programming if you want to use the information given here im-
mediately. If you know about these notions go on, else you are at least informed ;)

5.1 Rom

Rom is the name given to the file created from an original cartridge. It contains all information
present on the cartridge.

5.1.1 Structure

Because of the various devices used to transfer a game from one support to an other, a Rom
sometimes begin with an header and can have various structure.

Many Roms are interleaved. This state of a Rom corresponds to the pattern of the data. In
general, data is written linearly with a pattern such as 1234, but it can also be 2143 for example.
The emulators are written to allow this sort of things but imagine you are modifying a sentence
(certainly translating it ;) and you will find the trouble :

5.1 Rom 32

Original sentence : The_words_are_in_the_right_order

Modified sentence : The_words_are_in_the_wrong_order

Only one word differs, therefore it will be the only one written in the patch file (IPS extension)
with its position in the sentence : "wrong". See the patch chapter (page??) if you do not
understand why only the word that changed has to be saved.
Then if we consider two roms on which we want to apply the patch, one non interleaved and the
other interleaved. Thegreen letters stand for 1st and 3rd elements (of 8 letters) in the pattern,
black for 2nd and 4th, blue for changes :

Non interleaved Rom Interleaved Rom

1 2 3 4 2 1 4 3

The_word|s_are_in|_the_rig|ht_order s_are_in|The_word|ht_order|_the_rig

↓ Application of the IPS patch ↓

1 2 3 4 2 1 4 3

The_word|s_are_in|_the_wro|ng_order s_are_in|The_word|ht_orwro|nghe_rig

↓ Execution of the game ↓

1 2 3 4 1 2 3 4

The_word|s_are_in|_the_wro|ng_order The_word|s_are_in|nghe_rig|ht_orwro

The results in the first case are perfect, whereas the second sentence is a bit odd. Alas without
testing it with a program (something like a specific IPS patcher) or looking the first bytes of
the rom in an hexadecimal editor, there is no mean to know if the rom is interleaved or not, but
observe that the game crashes1.
Be relieved, if you carefully learn how to write basic C programs in the dedicated chapter (page
??) , you should transform a rom without much efforts (with a bit of experience ;).
Even if you have no intention of programming, there are already some programs that do the
work for you, as Dejap’s deinterleaver for Tales of Phantasia SNES.

For an SNES, the header has a size of 0x200 bytes, but there is no reason why it could not be
different. Be careful of that because the header is something added to the original game and
addresses in the whole Rom have to go up by 0x200 when dealing with them on computer.

Then you can find Roms for the same support with fundamental differences in structure. There
are Low/High roms for SNES , which is another pit for processing addresses (the first accessi-
ble address for a high rom is 0xC00000 and not 0x000000).

1The game often crashes because by inverting elements, we sometimes write over the game program

5.1 Rom 33

5.1.2 Bank

Without talking about details, you should know that Roms are divided in Banks. Imagine a
house with many bedrooms, a kitchen and so on. If you are in your bedroom and you want
milk, you must go in the kitchen at first an then you will find what you look for. While lying in
your bed, you can not see if there is milk in the fridge. Banks and rooms are the same. Data is
often organized so that similar elements (if possible) are gathered in the same Bank.

To keep the example of a SNES High Rom, banks are portions of 216 bytes2. Note that a Rom
always has a size of file multiple of the header size (+ the header size is there is one). Here is
the approximate shape of a standard Rom :

Offset Rom and Parts

1st byte of file 0x000000

↓ Header

End of the header 0x0001FF

1st byte of the banks 0x000200

↓ 1st bank

(216)th byte of bank 0x0101FF

1st byte of the bank 0x010200

↓ 2nd bank

Last byte of the bank 0x0201FF
...

1st byte of last bank 0x190200

↓ Last bank (32th)

End of file 0x2001FF arbitrary multiple

What is called Offset in the table is what I named address before. In fact address is often used
for a position in memory or in a file whereas offset is a reference point that is reached from
an origin. Their definitions are slightly different but their use is often the same. There is for
instance a 0x200 offset in the SNES High Rom to reach the true console game and a 0xC00000
offset between the SNES addresses and the PC addresses.

The example above corresponds to a Rom of 2097664 bytes, about 2Mo. This is the case of
Final Fantasy V Japanese Rom with an header. Remember the size of the game (without the
header) must remain a multiple of the bank size. If you want to expand a Rom , that means

2216 = 65536 bytes delimited by 16 bits pointers. For more details, see addresses in the programming part (page
??) . Banks are portions of 215 bytes for a SNES Low Rom.

5.2 Compact Disc 34

increase the size of the Rom to put additional data (often needed for text when translating from
English to French), you have to follow the rule. Even if large blocks of file will be filled with
useless bytes, it will have almost no effect on the final patch. See compressions (page48) and
IPS patch (page??) sections if you wonder why.

Notice the height of the lines in the table are non representative. Banks have all the same size
(even the last one) but are hopefully much larger than the header.

Information given here should be enough for you to work with Roms and avoid the main pitfalls
of translating cartridge games. A point that was not discussed here because not directly linked
to the structure, is the fact that elements are all packed into the rom file, without any blank
space between them. That is why you often need to expand the rom if you need additional
space. It is a bit different with CDs, and you will now see why.

5.2 Compact Disc

A CD, a DVD or a hard drive have the same sort of structure. They can hold tons of data,
and contrary to the Rom, their use is not limited to video games. The first difference is the
visible existence of folders and the hierarchic structure. As we will see later with the example
of Chrono Cross, it is not compulsory.

But before dealing with particularities of CDs and their structure, you must know that game
CDs have often protections and shapes to avoid piracy. Here our goal is not to suppress them
but to keep them and make the final CD (or DVD if you have enough disk space). To achieve
this, we need to copy all the data from the CD to the computer.

5.2.1 Image

This "image" has nothing to do with pictures. It is just a perfect copy of the content of a CD (or
a DVD). Then you should ask why not simply copy-paste the files in a browser for example.
The reason is shown by these pictures.

5.2 Compact Disc 35

The first picture is obtained when opening the image file with CDMage (page6) . This image
file has been created from FF5 NTSC using CloneCD but you can also make it with Nero
Burning Rom or CDRWin for instance. Refer to the help of these softwares if you want to
learn how to do it. This is in general very simple : just click on the first icon in CloneCD then
choose the drive and the final file name.
The second picture is the more obvious to obtain. I just inserted the FF5 CD in the drive and
browsed it with the Windows Explorer.
Here is the description of the listed elements (those with the red border) you can find on the
pictures :

1. Folders in the image files (originaly on the CD) as you could find on your hard drive.

2. CD Mode : In fact, what norm is used to put the files on the CDs. That’s the main
difference between PC Games, Audio CDs and PSX Games.
Sector size : The size in bytes of basic parts of the CD. This is the golden number for
image manipulation.

3. Size of the image file.

4. Number of sectors in the image file. You can notice that the overall size of the image is
a multiple of the sector size (like Banks for Rom files). Therefore 2*4=33.

5. Size of the files on the CD-Rom. It is the sum of all file sizes.

6. Folders on the CD.

You see that the folders are the same (and the files are exactly the same too, even if they do not
appear on the pictures), but the overall size is different. And you may ask why.

As for Rom files, they is an header that describes the CD. It contains the publisher, the name of
the game, and many other thinks. It is much larger than the header of a Rom (maybe because
space is no more a concern).
But this is not enough to explain the huge amount of data "created" when copying files to the

32352∗131429= 309121008 bytes here.

5.2 Compact Disc 36

hard drive. In fact every sector (you will see what it truly is in the next section), contains addi-
tional data : an header many subelements and a big section dedicated to error correction.

Finally, you should just remember that copying and manipulating files with CD is fine as long
as you reinsert them with the exact structure of the original game. In general, you will need to
create an image, then export and import files from it. You can perform this with softwares such
as CDMage (page6) , but your actions will be limited. To go beyond these restrictions, you
will need to program.

5.2.2 Sector

CD and their images are exclusively composed of sectors. All sectors have the same size, and
the same structure. On the next page you can find a screenshot of CDMage when displaying a
random sector of the Chrono Cross iso file.

An interesting aspect of CDMage is the colors used for the data. You can perfectly see the
components of a sector thanks to the various colors displayed :

5.2 Compact Disc 37

Color Bytes Description

grey 12 Sector header

blue 4 Sector number

cyan 8 Sector type

black 2048 Useful data

magenta 176 EDC

red 104 ECC

The sector header is always the same series of bytes : 00 FF FF FF FF FF FF FF FF FF FF 00.
The sector number is in time format, as seen in the chapter on numbers. In CDMage, you can
see the first sector is referenced as the 150th. It is just because the time for the first sector is
00:02:00.
Then you find the sub-header that describe the type of sector. We will see later what sort of
patterns are used.

When changing data in a sector field, the Error Correction Codes should be changed as well.
These bytes are used to correct the mistakes that appear when the laser does not burn a data byte
correctly or when a CD is scratched. Without them, a simple little scratch should be enough to
make your CD unusable. We will not enter in the details (else the length of this guide would
be greatly increased), but you can find tons of thesis on the Internet dealing with the subject.
Still do not bother with Error Detection Code and Error Correction Code for now unless you
are very interested in maths, since CDMage can correct them for you.

Note that the components detailed above are only reliable for data. In fact some CD have mixed
structure with only one track for data. Similar structures exist for XA (audio) and video, there-
fore if you really need to modify data in those tracks, you will have to adapt your programs to
their shape.

5.2.3 Tree

I say programs because most of the functions implemented in CDMage and others softwares
allow you just to extract and reinsert files of the same size. One or two are a bit more developed
and you can move files, but they are always limited. And you will understand how inadequate
they are when learning how games often access the files on the support.
Despite this, you have to know how files are organized on CD since the CD must keep a logical
structure, not specially for the console but for the softwares that will burn the CD or apply a
patch4.

If you opened this file one your hard drive, you must know that your hard drive is represented
as a tree in your operating system. The sample picture presented at the end of the general tips
section (page10) is one of these representations. A files tree is composed of several elements

4Even if there is still no settled format for CD patches.

5.2 Compact Disc 38

:

�������� Root(0)

��������
File(1)

oooooooooooooooooooooooo �������� Folder(2) �������� Folder(5)

OOOOOOOOOOOOOOOOOOOOOOOO

��������
File(3)

��������������� �������� Folder(4) ��������
File(6)

�������� File(7)

???????????????

A CD is just a sequence of bytes with no such structure. Therefore this tree has to be emulated
somehow. Every component must be referenced by another, and so on, while you are not at
the top on the tree. The summit is called the root5, every file and folder is linked to him by a
branch. To continue the description of a tree, folders correspond to nodes, they always contain
data except if they are unnecessary. Finally files are leaves, no file is a container for something
else.

I separated the elements in two groups on the diagram by using colors, because of the way
they are represented in the sectors. The root is in fact a folder, the only difference that makes it
unique, is its position in the tree, and on the CD. It corresponds to the first sector that is accessed
to know what is on the CD (when dealing with the data track and not the whole support).
Now watch how folders and files are organized on the CD, starting from the 22nd sector for
most of Playstation games. The figures have been chosen randomly :

Sectors Contents Number

22 → 22 Root folder 0

23 → 23 File 1

24 → 24 Folder 2

25 → 168 File 3

169 → 169 Folder 4

170 → 170 Folder 5

171 → 842 File 6

843 → 857 File 7

Since folders only contain the position of files and folders inside, they do not take much space,
only one sector in general.

5The terms used are official even if they are very easy to remember, what is rare.

5.2 Compact Disc 39

Second thing to notice is that there is no gap between files and/or folders. If one file ends at
sector 168, the next element starts at sector 169. Some CD have gaps between files but this is
only protection to avoid copies with "no enough stupid" burning softwares6.
Your last comment, and not the least, should be the order of the files. The figures here corre-
spond to those written between brackets on the diagram. The order comes from the way the
tree is created and its traversal. The tree was build to put the files first in each folder. There are
3 main traversals available in general for trees : prefix, infix and postfix traversal. This one is
prefix. When reaching a folder (starting from the root), you select the elements from the left to
the right. And before changing from Folder(2) to Folder(5) for example, you must traverse the
inner branches the same way. If you reach a leaf, you have nothing to do, else you must follow
the branch to the left. This is easy to understand when looking at the picture below, there is not
need for explanations.

You mark a node or a leaf, the first time you get near it, starting from the root, and going to the
left. If you wonder why I explains these details, that are not really important, it is just to avoid
you having problems if you have to change the whole structure of a CD one day. For example
if wish to add a folder.

Now if you take a look to this new screenshot of CDMage, you should understand what the
LBA column stands for, the 22nd sector is not obviously visible. Of course, it is one more
picture of the FF5 PSX NTSC game, taken from the root folder ;)

5.2.4 File

Now that you know how the elements are arranged in the image file, you just need to know how
files and folders are coded in it and you will have all the elements necessary to manipulate files.

By starting with files, we start with the simplest element. When dealing with the general
structure of sector, I explained the sub-header (8 bytes) was to describe the type of sector.
There are many possibilities, but here are the only 3 or 4 main patterns you may work with :

6I mean softwares that check the CD structure is correct and eventually modify it before burning

5.2 Compact Disc 40

Pattern Meaning

00 00 08 00 00 00 08 00 Beginning or internal sectors of a file

00 00 89 00 00 00 89 00 End of a file (last sector)

00 00 00 00 00 00 00 00 Nothing inside (for the CD structure,

00 00 20 00 00 00 20 00 not necessarily for the game)

Now you must have guessed the way a file is shared by sectors. The only difference with roms
is the length of the files, that is not multiple of 2048. Imagine your file is 10000 bytes long7,
you will have 4 full sectors of 2048 data bytes with the 00000800 header pattern followed by
one sector with 1808 bytes8 and the 00008900 pattern.

Data covers all the bytes in the corresponding field, from the first byte to the last one, the length
of the file is determined by a field in a folder sector, so there is no need to reserve space to point
out the number of bytes in the last sector. The sector type may seem redundant but it is a secu-
rity that also greatly help navigating through the image.

If the file length (and also the folder "length") is less than 2048 bytes, the sector type in the
header is directly put to 00 00 89 00 00 00 89 00. Image generating softwares generally com-
pleted sectors with zeros, but you can put whatever you want since these bytes should never be
read.

710000 and not 10Kb because 210 is not equal to 1000 but 1024.
81808= 10000−4∗2048

5.2 Compact Disc 41

5.2.5 Folder

This is the more complex part. Not because it is not logical, but modifying it involves quantity
of others changes.

The image on the next page shows the contents of the root folder of the now-well-known FF5
image, this time from the hexadecimal side.

5.2 Compact Disc 42

5.2 Compact Disc 43

Above the hexadecimal window, the figure written corresponds to the 22nd sector, since CD-
Mage starts to count from 150. 172 is in fact the direct translation of the time code written
below in dark blue : 00 minute 02 seconds and 22 frames9.
The type of sector corresponds to an end of file. As I said before,folders often take less than
one sector.

Now we will interest in the elements defining a folder. All the red bars on the picture are
changes of file or folder. Every portion marked off is associated with a file or a folder in the
root folder represented.

We will analyze the part surrounded by blue lines corresponding to the SQEA.TIM file. It is
the Square Electronic Arts PSX logo in TIM format (page??) .

3A 00 8F 00 00 00 00 00 00 8F 40 18 00 00 00 00 18 40

Size Sector (BE) Sector (LE) Length (BE) Length (LE)

63 04 02 14 19 1C 24 00 00 00 01 00 00 01 0A

Additional information

53 51 45 41 2E 54 49 4D 3D 31

Filename + Specifications

00 00 00 00 00 0D 55 58 41 00 00 00 00 00 00

Additional information

Here is the description of the various fields :

• Size : The number of bytes in the folder sector used for this file. It allows the CD
reader to jump from elements to elements and to know where the description stops.
It only depends on the length of the filename and specifications. The other parts are
of constant length. The size is equal to the hexadecimal value of the 2 bytes in Big
Endian representation. Here if we count and calculate the size of the element, we obtain
: 58= 3∗16+10

• Sector : The sector where the file starts. It is represented on 4 bytes in Big Endian then
in Little Endian, to limit loss of information in case of scratches or dust. Here the initial
sector is 0x8F = 143.

• Length : Same thing here except it represents the length in bytes of the file to tell the
reader where to stop in the last sector and how many sectors it has to read. Here the file
size is 0x1840 = 6208 bytes.

9172= 02∗75+22 since there are 75 frames per second (page20) .

5.2 Compact Disc 44

• Filename and Specifications: The name that will appear in an explorer or in a console.
Here it is "SQEA.TIM". In general, this information is used to select files and get access
to them. You will soon see, that video games do not always need these elements. Finally
the specifications, mainly distinguish files and folders. When working with CDs you will
quickly understand what are their signification, if you need to have more details.

• Additional information : Bytes I do not know the use. I never needed them, so just
concentrate on the other fields for now.

Now if you look at the first two elements of the folder on the CDMage screenshot, you may
not understand what they stand for. In fact they are the classic ./ and ../ folders, famous under
almost every system. For those who do not know about them, the ./ is the current directory and
the ../ is the link to the parent directory. They are necessary to avoid making all the way back
if we just want to go up one level.
The initial sector of the ./ folder is 22 (00 00 00 16), which is the current sector. The length is
equal to 2048 (00 00 08 00), and it is the general value for folders, there is no need to precise
the exact number of useful bytes, because folders are not like data files that can contain any-
thing, they have the static structure described here.
Because we are in the root folder, the ../ folder refers to the current folder too.

Of course if you follow the links indicated by the "Sector" fields in each element, you will
find other folders and files and you will build the tree from the root. This is all you need to
change position, length of files or even add files when dealing with an image file with a classic
operating system.
But with a video game system, you go to a lot of trouble, and this is only the beginning, even
if the more complex.

5.2.6 Video game CD

Now that you went over the image and sector theory, you will be disappointed to hear that it is
not enough. The section will be very short, because it depends on the game, and you will have
to look for clues in the image file yourselves.

Why a video game, not designed to be modified or accessed from an explorer, would bother
to use file names, and even folders. A giant list of files is enough, since a simple program
can convert the name of the file requested (and often a simple number) to a sector offset and a
length of file (if necessary).

Then you may ask why game developers respect this tree structure. In fact, they have no reason
to do that, and some games have no folders and files at all. This policy is taken in Chrono
Cross or Threads of Fate for instance. At least, it is obvious with them to understand that there
is an other structure beneath the official one. After looking to the image file for 30 minutes or
less, you will discover a list of addresses that correspond to the initial sector of thousands of
files with a length indication10. Here is the beginning of the files list of Chrono Cross, if you

10It took me much time to understand what the 4th byte was for. Maybe was I a little obsessed by the classic
structure.

5.2 Compact Disc 45

have to look for something close in the future. The red bars delimit the information, the 3 first
bytes are the sector offset, and the last one is the length complement to 2048 divided by 8 (very
simple and clear ;) :

Note that even if Chrono Cross does not have tons of folders visible11, it is a model of recurrent
structure, with tons of independent elements.

Alas, many other games propose folders but do not work with them, and some have the sector
addresses directly written in the ASM code of the main program. And if you are unlucky, they
will be dispatched all over the file...

Now it’s up to you to find the clues and elements necessary to work with Playstation games or
other systems. You can find examples of CD image exploration in the programming chapter
(page??) . Good luck.

11In fact there are only 2 small files visible, the system and the executable file.

Chapter 6
Texts

Chapter 7
Pictures

Chapter 8
Compressions

Chapter 9
Patchs

Chapter 10
Tests

Chapter 11
General Methods

Chapter 12
Softwares

Chapter 13
Corrections

13.1 Numbers

Read the questions (page20) ?

1. 171181 in decimal and 29cad in hexadecimal.

2. 8 and F.

3. 22 minutes 22 seconds and 22 frames.

Index

Compressions,48
Corrections,53

Numbers,53

Exercises
Numbers,20

File systems,31
Bank,33
branch,38
CD, 34
CD Image,34
copying files,36
error correction codes,37
expand,33
File, 39
Folder,41
header,31
interleaved,31
leaf,38
low/high,32
mixed structure,37
node,38
offset,33
Rom,31
rom size,33
Rom structure,31
root,38
Sector,36
Tree,37
tree traversal,39
Video game CD,44

General Methods,51

Numbers,14
Bases,15
Big endian,20

Binary,15
bit, 15
byte,16
Comparisons,15
Composition,19
Decomposition,18
Digits limit, 14
euclidian division,17
frame,20
Hörner,18
Hexadecimal,15
Increment,14
Little endian,19
middle endian,19
minute,20
Modulo,17
Octal representations,19
Operations,16
overflow,15
Right shift,16
second,20
Time,20

Patchs,49
Pictures,47
Programming,22

C language,23
Comments,24
Constant,26
Data types,27
Functions,26
Inclusion,30
Keyword,24
segmentation fault,29
Structure,23
Useful libraries,30
Variable,24

INDEX 55

Softwares,6, 52
CDMage,6
Nero,7
Notepad,7
Susie,7
Tile Layer Pro,7
Translhexion,7
Visual C++,7

Tests,50
Texts,46
Tips,10

assembler,12
backups,10
programming,11
tasks,11
tests,11
versions,10

	What is this document ?
	Disclaimer
	Preface
	Introduction
	Useful softwares
	Links
	Versions history
	Special thanks

	What to do ?
	Where to begin ?
	General tips and organization

	Numbers
	Learn to count
	Increment numbers
	Limited digits number
	Comparisons

	Bases
	Binary
	Hexadecimal

	Common operations
	Right shift
	Modulo

	Composition/Decomposition
	Hörner method
	Decomposition
	Composition

	Octal representations
	Little endian
	Big endian

	Time
	Exercises

	Programming
	Why the C language ?
	General structure
	Keywords
	Comments
	Variables
	Constants
	Functions and procedures
	Data types
	Inclusions

	Useful libraries and functions
	Examples

	File systems
	Rom
	Structure
	Bank

	Compact Disc
	Image
	Sector
	Tree
	File
	Folder
	Video game CD

	Texts
	Pictures
	Compressions
	Patchs
	Tests
	General Methods
	Softwares
	Corrections
	Numbers

